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Requirements for Biomarker Study proposals 
 
Ancillary Study proposals to 1) develop a biomarker prediction model, 2) validate a model, 3) combination of 
model development and validation should be evaluated for the following items. 
 
1. Focused aim and hypothesis 

 
2. Preliminary data 

 
3. Using the TRIPOD statement for guidance, provide: 

a. Review the TRIPOD statement for multivariable prediction models for diagnosis and prognosis 
(attached) to develop a Research Plan for each Phase that follows the terminology and suggestions. 

b. Include a schematic representation of the study design analogous to the CONSORT diagram in the 
SomaLogic JAMA 2016 paper and/or Figure 1 of the TRIPOD statement. 

c. Provide the classification of your planned prediction and validation models as presented in Figure 3 of 
the TRIPOD Statement, with an explanation. 

d. Please complete the 22-item checklist as presented in the TRIPOD statement, adding explanations for 
each items, if needed. 

e. The analysis component of the Research Plan should follow the proposed study design and be patterned 
after the format used in the JAMA 2016 SomeLogic paper. 

f. Specify and justify the number of each patient-study-visit samples with power calculations that will be 
used for: 

i. Model development 
ii. Model validation 

 
4. Agreement to collaborate on the development of a subcontract, supplement, or another financial 

mechanism with the NIDDK NASH CRN to cover costs to the JHU DCC for sample selection, dataset 
preparation, consultation and validation analyses. 
 

5. Agreement to collaborate on the development of a formal, written Authorship and Data Sharing Agreement 
between NASH CRN sponsor, the NASH CRN liaison, to address the following on behalf of the NASH CRN 
investigators: 
a. Collaboration on and authorship of primary papers arising from this work. 
b.  Acknowledgment of and credit to the NIDDK NASH CRN investigators on all publications and public 

presentations of results from the samples provided. 
c. Agree to provide the DCC with models in enough detail so that the DCC can independently calculate the 

clinical prediction scores. The biomarker selection algorithms need to be defined by AS investigators, but 
the DCC will not attempt to replicate the selections, unless asked to do so. 

d. Agree to work with NASH CRN liaison and the NIDDK to develop and sign a Data Sharing Agreement that 
recognizes that ownership of the data resulting from this Ancillary Study will be jointly shared between 
the AS investigators and the NASH CRN investigators. 

e. Agree to keep all communications, details and plans of the study confidential unless prior approval is 
obtained from the NASH CRN Steering Committee prior to release of information. 

f. Agree that the NASH CRN clinical data is not released outside those investigators working on the study 
without prior authorization from the NASH CRN Steering Committee and the NIDDK. 
 

6. If the Ancillary Study is to be funded by Industry, then either an agreement (e.g., CTA) with NIDDK or a 
formal contract must be signed between the NASH CRN liaison Investigator’s site and the company. This 
should follow the NASH CRN Industry Collaboration template. 



Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement
Gary S. Collins, PhD; Johannes B. Reitsma, MD, PhD; Douglas G. Altman, DSc; and Karel G.M. Moons, PhD

Prediction models are developed to aid health care providers in
estimating the probability or risk that a specific disease or con-
dition is present (diagnostic models) or that a specific event will
occur in the future (prognostic models), to inform their decision
making. However, the overwhelming evidence shows that the
quality of reporting of prediction model studies is poor. Only
with full and clear reporting of information on all aspects of a
prediction model can risk of bias and potential usefulness of pre-
diction models be adequately assessed. The Transparent Re-
porting of a multivariable prediction model for Individual Prog-
nosis Or Diagnosis (TRIPOD) Initiative developed a set of
recommendations for the reporting of studies developing, vali-
dating, or updating a prediction model, whether for diagnostic
or prognostic purposes. This article describes how the TRIPOD
Statement was developed. An extensive list of items based on a
review of the literature was created, which was reduced after a
Web-based survey and revised during a 3-day meeting in June

2011 with methodologists, health care professionals, and journal
editors. The list was refined during several meetings of the steer-
ing group and in e-mail discussions with the wider group of
TRIPOD contributors. The resulting TRIPOD Statement is a
checklist of 22 items, deemed essential for transparent reporting
of a prediction model study. The TRIPOD Statement aims to im-
prove the transparency of the reporting of a prediction model
study regardless of the study methods used. The TRIPOD State-
ment is best used in conjunction with the TRIPOD explanation
and elaboration document. To aid the editorial process and
readers of prediction model studies, it is recommended that au-
thors include a completed checklist in their submission (also
available at www.tripod-statement.org).

Ann Intern Med. 2015;162:55-63. doi:10.7326/M14-0697 www.annals.org
For author affiliations, see end of text.
For contributors to the TRIPOD Statement, see the Appendix (available at
www.annals.org).

Editors' Note: In order to encourage dissemination of
the TRIPOD Statement, this article is freely accessible on
the Annals of Internal Medicine Web site (www.annals
.org) and will be also published in BJOG, British Journal
of Cancer, British Journal of Surgery, BMC Medicine,
British Medical Journal, Circulation, Diabetic Medicine,
European Journal of Clinical Investigation, European
Urology, and Journal of Clinical Epidemiology. The au-
thors jointly hold the copyright of this article. An accom-
panying explanation and elaboration article, titled
Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD):
Explanation and Elaboration, is published as an online-
only supplement at http://annals.org/article.aspx?doi=10
.7326/M14-0698; the American College of Physicians
holds the copyright to the online-only supplement.

In medicine, patients with their care providers are
confronted with making numerous decisions on the

basis of an estimated risk or probability that a specific
disease or condition is present (diagnostic setting) or a
specific event will occur in the future (prognostic set-
ting) (Figure 1). In the diagnostic setting, the probabil-
ity that a particular disease is present can be used, for
example, to inform the referral of patients for further
testing, initiate treatment directly, or reassure patients
that a serious cause for their symptoms is unlikely. In
the prognostic setting, predictions can be used for
planning lifestyle or therapeutic decisions based on the
risk for developing a particular outcome or state of
health within a specific period (1, 2). Such estimates of
risk can also be used to risk-stratify participants in ther-
apeutic clinical trials (3, 4).

In both the diagnostic and prognostic setting, esti-
mates of probabilities are rarely based on a single pre-

dictor (5). Doctors naturally integrate several patient
characteristics and symptoms (predictors, test results)
to make a prediction (see Figure 2 for differences in
common terminology between diagnostic and prog-
nostic studies). Prediction is therefore inherently multi-
variable. Prediction models (also commonly called
“prognostic models,” “risk scores,” or “prediction rules”
[6]) are tools that combine multiple predictors by as-
signing relative weights to each predictor to obtain a
risk or probability (1, 2). Well-known prediction models
include the Framingham Risk Score (7), Ottawa Ankle
Rules (8), EuroScore (9), Nottingham Prognostic Index
(10), and the Simplified Acute Physiology Score (11).

PREDICTION MODEL STUDIES
Prediction model studies can be broadly catego-

rized as model development (12), model validation
(with or without updating) (13) or a combination of
both (Figure 3). Model development studies aim to de-
rive a prediction model by selecting the relevant pre-
dictors and combining them statistically into a multivari-
able model. Logistic and Cox regression are most
frequently used for short-term (for example, disease
absent vs. present, 30-day mortality) and long-term (for
example, 10-year risk) outcomes, respectively (12–14).
Studies may also focus on quantifying the incremental
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or added predictive value of a specific predictor (for
example, newly discovered) to a prediction model (18).

Quantifying the predictive ability of a model on the
same data from which the model was developed (often
referred to as apparent performance) will tend to give
an optimistic estimate of performance, owing to over-
fitting (too few outcome events relative to the number
of candidate predictors) and the use of predictor selec-
tion strategies (19). Studies developing new prediction
models should therefore always include some form of
internal validation to quantify any optimism in the
predictive performance (for example, calibration and
discrimination) of the developed model. Internal valida-
tion techniques use only the original study sample and
include such methods as bootstrapping or cross-
validation. Internal validation is a necessary part of
model development (2). Overfitting, optimism, and
miscalibration may also be addressed and accounted
for during the model development by applying shrink-
age (for example, heuristic or based on bootstrapping
techniques) or penalization procedures (for example,
ridge regression or lasso) (20).

After developing a prediction model, it is strongly
recommended to evaluate the performance of the

model in other participant data than was used for the
model development. Such external validation requires
that for each individual in the new data set, outcome
predictions are made using the original model (that is,
the published regression formula) and compared with
the observed outcomes (13, 14). External validation
may use participant data collected by the same investi-
gators, typically using the same predictor and outcome
definitions and measurements, but sampled from a
later period (temporal or narrow validation); by other
investigators in another hospital or country, sometimes
using different definitions and measurements (geo-
graphic or broad validation); in similar participants but
from an intentionally different setting (for example,
model developed in secondary care and assessed in
similar participants but selected from primary care); or
even in other types of participants (for example, model
developed in adults and assessed in children, or devel-
oped for predicting fatal events and assessed for
predicting nonfatal events) (13, 15, 17, 21, 22). In
case of poor performance, the model can be updated
or adjusted on the basis of the validation data set
(13).

Figure 1. Schematic representation of diagnostic and prognostic prediction modeling studies.
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The nature of the prediction in diagnosis is estimating the probability that a specific outcome or disease is present (or absent) within an individual,
at this point in time—that is, the moment of prediction (T = 0). In prognosis, the prediction is about whether an individual will experience a specific
event or outcome within a certain time period. In other words, in diagnostic prediction the interest is in principle a cross-sectional relationship,
whereas prognostic prediction involves a longitudinal relationship. Nevertheless, in diagnostic modeling studies, for logistical reasons, a time
window between predictor (index test) measurement and the reference standard is often necessary. Ideally, this interval should be as short as
possible and without starting any treatment within this period.
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REPORTING OF MULTIVARIABLE PREDICTION

MODEL STUDIES
Studies developing or validating a multivariable

prediction model share specific challenges for re-
searchers (6). Several reviews have evaluated the qual-
ity of published reports that describe the development
or validation prediction models (23–28). For example,
Mallett and colleagues (26) examined 47 reports pub-
lished in 2005 presenting new prediction models in
cancer. Reporting was found to be poor, with insuffi-
cient information described in all aspects of model de-
velopment, from descriptions of patient data to statisti-
cal modeling methods. Collins and colleagues (24)
evaluated the methodological conduct and reporting
of 39 reports published before May 2011 describing
the development of models to predict prevalent or in-
cident type 2 diabetes. Reporting was also found to be
generally poor, with key details on which predictors
were examined, the handling and reporting of missing
data, and model-building strategy often poorly de-
scribed. Bouwmeester and colleagues (23) evaluated
71 reports, published in 2008 in 6 high-impact general
medical journals, and likewise observed an overwhelm-
ingly poor level of reporting. These and other reviews
provide a clear picture that, across different disease ar-
eas and different journals, there is a generally poor
level of reporting of prediction model studies (6, 23–27,
29). Furthermore, these reviews have shown that seri-
ous deficiencies in the statistical methods, use of small
data sets, inappropriate handling of missing data, and
lack of validation are common (6, 23–27, 29). Such de-
ficiencies ultimately lead to prediction models that are
not or should not be used. It is therefore not surprising,
and fortunate, that very few prediction models, relative

to the large number of models published, are widely
implemented or used in clinical practice (6).

Prediction models in medicine have proliferated in
recent years. Health care providers and policy makers
are increasingly recommending the use of prediction
models within clinical practice guidelines to inform de-
cision making at various stages in the clinical pathway
(30, 31). It is a general requirement of reporting of re-
search that other researchers can, if required, replicate
all the steps taken and obtain the same results (32). It is
therefore essential that key details of how a prediction
model was developed and validated be clearly re-
ported to enable synthesis and critical appraisal of all
relevant information (14, 33–36).

REPORTING GUIDELINES FOR PREDICTION

MODEL STUDIES: THE TRIPOD STATEMENT
We describe the development of the TRIPOD

(Transparent Reporting of a multivariable prediction
model for Individual Prognosis or Diagnosis) State-
ment, a guideline specifically designed for the report-
ing of studies developing or validating a multivariable
prediction model, whether for diagnostic or prognostic
purposes. TRIPOD is not intended for multivariable
modeling in etiologic studies or for studies investi-
gating single prognostic factors (37). Furthermore,
TRIPOD is also not intended for impact studies that
quantify the impact of using a prediction model on par-
ticipant or doctors' behavior and management, partici-
pant health outcomes, or cost-effectiveness of care,
compared with not using the model (13, 38).

Reporting guidelines for observational (the
STrengthening the Reporting of OBservational studies

Figure 2. Similarities and differences between diagnostic and prognostic prediction models.

 Despite the different nature (timing) of the prediction, there are many similarities between diagnostic and prognostic prediction models, including: 

• Type of outcome is often binary: either disease of interest present versus absent (in diagnosis) or the future occurrence of an event yes or no (in 

prognosis). 

• The key interest is to generate the probability of the outcome being present or occurring for an individual, given the values of 2 or more predictors, with 

the purpose of informing patients and guiding clinical decision making.

• The same challenges as when developing a multivariable prediction model, such as selection of the predictors, model-building strategies, and handling of 

continuous predictors and the danger of overfitting.

• The same measures for assessing model performance.

Different terms for similar features between diagnostic and prognostic modeling studies are summarized below.

Diagnostic Prediction Modeling Study

Diagnostic tests or index tests

Target disease/disorder (presence vs. absence)

Reference standard and disease verification

Partial verification

Explanatory variables, predictors, covariates (X variables)

Outcome (Y variable)

Missing outcomes

Prognostic Prediction Modeling Study

Prognostic factors or indicators

Event (future occurrence: yes or no)

Event definition and event measurement

Loss to follow-up and censoring
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in Epidemiology [STROBE]) (39), tumor marker (REport-
ing recommendations for tumour MARKer prognostic
studies [REMARK]) (37), diagnostic accuracy (STAn-
dards for the Reporting of Diagnostic accuracy studies
[STARD]) (40), and genetic risk prediction (Genetic RIsk
Prediction Studies [GRIPS]) (41) studies all contain
many items that are relevant to studies developing or
validating prediction models. However, none of these
guidelines are entirely appropriate for prediction
model studies. The 2 guidelines most closely related to
prediction models are REMARK and GRIPS. However,

the focus of the REMARK checklist is primarily on prog-
nostic factors and not prediction models, whereas the
GRIPS statement is aimed at risk prediction using ge-
netic risk factors and the specific methodological issues
around handling large numbers of genetic variants.

To address a broader range of studies, we devel-
oped the TRIPOD guideline: Transparent Reporting of
a multivariable prediction model for Individual Progno-
sis or Diagnosis. TRIPOD explicitly covers the develop-
ment and validation of prediction models for both di-
agnosis and prognosis, for all medical domains and all

Figure 3. Types of prediction model studies covered by the TRIPOD Statement.

 Type 1a Development of a prediction model where predictive performance is then directly evaluated using exactly the same data (apparent performance).

 Type 1b Development of a prediction model using the entire data set, but then using resampling (e.g., bootstrapping or cross-validation) techniques to 

evaluate the performance and optimism of the developed model.  Resampling techniques, generally referred to as “internal validation”, are 

recommended as a prerequisite for prediction model development, particularly if data are limited (6, 14, 15).

 Type 2a The data are randomly split into 2 groups: one to develop the prediction model and one to evaluate its predictive performance.  This design is  

generally not recommended or better than type 1b, particularly in case of limited data, because it leads to lack of power during model development 

and validation (14, 15, 16).

 Type 2b The data are nonrandomly split (e.g., by location or time) into 2 groups: one to develop the prediction model and one to evaluate its predictive 

performance.  Type 2b is a stronger design for evaluating model performance than type 2a because it allows for nonrandom variation between the 

2 data sets (6, 13, 17).

 Type 3 Development of a prediction model using 1 data set and an evaluation of its performance on separate data (e.g., from a different study).

 Type 4 The evaluation of the predictive performance of an existing (published) prediction model on separate data (13).

Types 3 and 4 are commonly referred to as “external validation studies.” Arguably type 2b is as well, although it may be considered an intermediary between 

internal and external validation.  

D

Type 4: Validation only

Type 3: Development and validation
using separate data

Type 2b: Nonrandom split-sample
development and validation

Type 2a: Random split-sample
development and validation

Analysis
Type

Description

D V

D V

V

Type 1b: Development and validation
using resampling

Type 1a: Development only

Only a single data set 
is available: All data 
are used to develop 

the model

Only a single data set 
is available: A portion 
of the data are used to

develop the model

A separate
data set is available

for validation

D = development data; V = validation data.
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types of predictors. TRIPOD also places much more
emphasis on validation studies and the reporting re-
quirements for such studies. The reporting of studies
evaluating the incremental value of specific predictors,
beyond established predictors or even beyond existing
prediction models (18, 42), also fits entirely within the
remit of TRIPOD (see the accompanying explanation
and elaboration document [43], available at www
.annals.org).

DEVELOPING THE TRIPOD STATEMENT
We convened a 3-day meeting with an interna-

tional group of prediction model researchers, including
statisticians, epidemiologists, methodologists, health
care professionals, and journal editors (from Annals of
Internal Medicine, BMJ, Journal of Clinical Epidemiol-
ogy, and PLoS Medicine) to develop recommendations
for the TRIPOD Statement.

We followed published guidance for developing
reporting guidelines (44) and established a steering
committee (Drs. Collins, Reitsma, Altman, and Moons)
to organize and coordinate the development of
TRIPOD. We conducted a systematic search of
MEDLINE, EMBASE, PsychINFO, and Web of Science to
identify any published articles making recommenda-
tions on reporting of multivariable prediction models
(or aspects of developing or validating a prediction
model), reviews of published reports of multivariable
prediction models that evaluated methodological con-
duct or reporting and reviews of methodological con-
duct and reporting of multivariable models in general.
From these studies, a list of 129 possible checklist
items was generated. The steering committee then
merged related items to create a list of 76 candidate
items.

Twenty-five experts with a specific interest in pre-
diction models were invited by e-mail to participate in
the Web-based survey and to rate the importance of
the 76 candidate checklist items. Respondents (24 of
27) included methodologists, health care professionals,
and journal editors. (In addition to the 25 meeting par-
ticipants, the survey was also completed by 2 statistical
editors from Annals of Internal Medicine.)

The results of the survey were presented at a 3-day
meeting in June 2011, in Oxford, United Kingdom; it
was attended by 24 of the 25 invited participants (22 of
whom had participated in the survey). During the 3-day
meeting, each of the 76 candidate checklist items was
discussed in turn, and a consensus was reached on
whether to retain, merge with another item, or omit the
item. Meeting participants were also asked to suggest
additional items. After the meeting, the checklist was
revised by the steering committee during numerous
face-to-face meetings, and circulated to the partici-
pants to ensure it reflected the discussions. While
making revisions, conscious efforts were made to har-
monize our recommendations with other reporting
guidelines, and where possible we chose the same or
similar wording for items (37, 39, 41, 45, 46).

TRIPOD COMPONENTS
The TRIPOD Statement is a checklist of 22 items

that we consider essential for good reporting of studies
developing or validating multivariable prediction mod-
els (Table). The items relate to the title and abstract
(items 1 and 2), background and objectives (item 3),
methods (items 4 through 12), results (items 13 through
17), discussion (items 18 through 20), and other infor-
mation (items 21 and 22). The TRIPOD Statement cov-
ers studies that report solely development (12, 15),
both development and external validation, and solely
external validation (with or without updating), of a pre-
diction model (14) (Figure 3). Therefore, some items
are relevant only for studies reporting the development
of a prediction model (items 10a, 10b, 14, and 15), and
others apply only to studies reporting the (external) val-
idation of a prediction model (items 10c, 10e, 12, 13c,
17, and 19a). All other items are relevant to all types of
prediction model development and validation studies.
Items relevant only to the development of a prediction
model are denoted by D, items relating solely to
validation of a prediction model are denoted by V,
whereas items relating to both types of study are de-
noted D;V.

The recommendations within TRIPOD are guide-
lines only for reporting research and do not prescribe
how to develop or validate a prediction model. Further-
more, the checklist is not a quality assessment tool to
gauge the quality of a multivariable prediction model.

An ever-increasing number of studies are evaluat-
ing the incremental value of specific predictors, beyond
established predictors or even beyond existing predic-
tion models (18, 42). The reporting of these studies fits
entirely within the remit of TRIPOD (see accompanying
explanation and elaboration document [43]).

THE TRIPOD EXPLANATION AND

ELABORATION DOCUMENT
In addition to the TRIPOD Statement, we produced

a supporting explanation and elaboration document
(43) in a similar style to those for other reporting guide-
lines (47–49). Each checklist item is explained and ac-
companied by examples of good reporting from pub-
lished articles. In addition, because many such studies
are methodologically weak, we also summarize the
qualities of good (and the limitations of less good)
studies, regardless of reporting (43). A comprehensive
evidence base from existing systematic reviews of pre-
diction models was used to support and justify the ra-
tionale for including and illustrating each checklist item.
The development of the explanation and elaboration
document was completed after several face-to-face
meetings, teleconferences, and iterations among the
authors. Additional revisions were made after sharing
the document with the whole TRIPOD group before fi-
nal approval.

Role of the Funding Source
There was no explicit funding for the development

of this checklist and guidance document. The consen-
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Table. Checklist of Items to Include When Reporting a Study Developing or Validating a Multivariable Prediction Model for
Diagnosis or Prognosis*

Section/Topic Item Development
or Validation?

Checklist Item Page

Title and abstract
Title 1 D;V Identify the study as developing and/or validating a multivariable prediction model, the

target population, and the outcome to be predicted.
Abstract 2 D;V Provide a summary of objectives, study design, setting, participants, sample size,

predictors, outcome, statistical analysis, results, and conclusions.

Introduction
Background and

objectives
3a D;V Explain the medical context (including whether diagnostic or prognostic) and rationale

for developing or validating the multivariable prediction model, including references
to existing models.

3b D;V Specify the objectives, including whether the study describes the development or
validation of the model, or both.

Methods
Source of data 4a D;V Describe the study design or source of data (e.g., randomized trial, cohort, or registry

data), separately for the development and validation datasets, if applicable.
4b D;V Specify the key study dates, including start of accrual; end of accrual; and, if applicable,

end of follow-up.
Participants 5a D;V Specify key elements of the study setting (e.g., primary care, secondary care, general

population) including number and location of centres.
5b D;V Describe eligibility criteria for participants.
5c D;V Give details of treatments received, if relevant.

Outcome 6a D;V Clearly define the outcome that is predicted by the prediction model, including how
and when assessed.

6b D;V Report any actions to blind assessment of the outcome to be predicted.
Predictors 7a D;V Clearly define all predictors used in developing the multivariable prediction model,

including how and when they were measured.
7b D;V Report any actions to blind assessment of predictors for the outcome and other

predictors.
Sample size 8 D;V Explain how the study size was arrived at.
Missing data 9 D;V Describe how missing data were handled (e.g., complete-case analysis, single

imputation, multiple imputation) with details of any imputation method.
Statistical analysis

methods
10a D Describe how predictors were handled in the analyses.

10b D Specify type of model, all model-building procedures (including any predictor
selection), and method for internal validation.

10c V For validation, describe how the predictions were calculated.
10d D;V Specify all measures used to assess model performance and, if relevant, to compare

multiple models.
10e V Describe any model updating (e.g., recalibration) arising from the validation, if done.

Risk groups 11 D;V Provide details on how risk groups were created, if done.
Development vs.

validation
12 V For validation, identify any differences from the development data in setting, eligibility

criteria, outcome, and predictors.

Results
Participants 13a D;V Describe the flow of participants through the study, including the number of

participants with and without the outcome and, if applicable, a summary of the
follow-up time. A diagram may be helpful.

13b D;V Describe the characteristics of the participants (basic demographics, clinical features,
available predictors), including the number of participants with missing data for
predictors and outcome.

13c V For validation, show a comparison with the development data of the distribution of
important variables (demographics, predictors, and outcome).

Model development 14a D Specify the number of participants and outcome events in each analysis.
14b D If done, report the unadjusted association between each candidate predictor and

outcome.
Model specification 15a D Present the full prediction model to allow predictions for individuals (i.e., all regression

coefficients, and model intercept or baseline survival at a given time point).
15b D Explain how to use the prediction model.

Model performance 16 D;V Report performance measures (with CIs) for the prediction model.
Model updating 17 V If done, report the results from any model updating (i.e., model specification, model

performance).

Discussion
Limitations 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per

predictor, missing data).
Interpretation 19a V For validation, discuss the results with reference to performance in the development

data, and any other validation data.
19b D;V Give an overall interpretation of the results, considering objectives, limitations, results

from similar studies, and other relevant evidence.
Implications 20 D;V Discuss the potential clinical use of the model and implications for future research.

Continued on following page
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sus meeting in June 2011 was partially funded by a
National Institute for Health Research Senior Investiga-
tor Award held by Dr. Altman, Cancer Research UK,
and the Netherlands Organization for Scientific Re-
search. Drs. Collins and Altman are funded in part by
the Medical Research Council. Dr. Altman is a member
of the Medical Research Council Prognosis Research
Strategy (PROGRESS) Partnership. The funding sources
had no role in the study design, data collection, analy-
sis, preparation of the manuscript, or decision to sub-
mit the manuscript for publication.

DISCUSSION
Many reviews have showed that the quality of re-

porting in published articles describing the develop-
ment or validation of multivariable prediction models in
medicine is poor (23–27, 29). In the absence of detailed
and transparent reporting of the key study details, it is
difficult for the scientific and health care community to
objectively judge the strengths and weaknesses of a
prediction model study (34, 50, 51). The explicit aim
of this checklist is to improve the quality of reporting
of published prediction model studies. The TRIPOD
guideline has been developed to support authors in
writing reports describing the development, validation
or updating of prediction models, aid editors and peer
reviewers in reviewing manuscripts submitted for pub-
lication, and help readers in critically appraising pub-
lished reports.

The TRIPOD Statement does not prescribe how
studies developing, validating, or updating prediction
models should be undertaken, nor should it be used as
a tool for explicitly assessing quality or quantifying risk
of bias in such studies (52). There is, however, an im-
plicit expectation that authors have an appropriate
study design and conducted certain analyses to ensure
all aspects of model development and validation are
reported. The accompanying explanation and elabora-
tion document describes aspects of good practice for
such studies, as well as highlighting some inappropri-
ate approaches that should be avoided (43).

TRIPOD encourages complete and transparent re-
porting reflecting study design and conduct. It is a min-
imum set of information that authors should report to
inform the reader about how the study was carried out.
We are not suggesting a standardized structure of re-
porting, rather that authors should ensure that they ad-
dress all the checklist items somewhere in their article
with sufficient detail and clarity.

We encourage researchers to develop a study pro-
tocol, especially for model development studies, and
even register their study in registers that accommodate
observational studies (such as ClinicalTrials.gov) (53,
54). The importance of also publishing protocols for
developing or validating prediction models, certainly
when conducting a prospective study, is slowly being
acknowledged (55, 56). Authors can also include the
study protocol when submitting their article for peer
review, so that readers can know the rationale for in-
cluding individuals into the study or whether all of the
analyses were prespecified.

To help the editorial process; peer reviewers; and,
ultimately, readers, we recommend submitting the
checklist as an additional file with the report, indicating
the pages where information for each item is reported.
The TRIPOD reporting template for the checklist can be
downloaded from www.tripod-statement.org.

Announcements and information relating to
TRIPOD will be broadcast on the TRIPOD Twitter ad-
dress (@TRIPODStatement). The Enhancing the QUAlity
and Transparency Of health Research (EQUATOR) Net-
work (www.equator-network.org) will help disseminate
and promote the TRIPOD Statement.

Methodological issues in developing, validating,
and updating prediction models evolve. TRIPOD will
be periodically reappraised, and if necessary modified
to reflect comments, criticisms, and any new evidence.
We therefore encourage readers to make suggestions
for future updates so that ultimately, the quality of pre-
diction model studies will improve.

From Centre for Statistics in Medicine, Nuffield Department of
Orthopaedics, Rheumatology and Musculoskeletal Sciences,
Botnar Research Centre, University of Oxford, Oxford, United
Kingdom, and Julius Center for Health Sciences and Pri-
mary Care, University Medical Center Utrecht, Utrecht, the
Netherlands.

Grant Support: There was no explicit funding for the develop-
ment of this checklist and guidance document. The consensus
meeting in June 2011 was partially funded by a National In-
stitute for Health Research Senior Investigator Award held
by Dr. Altman, Cancer Research UK (grant C5529), and the
Netherlands Organization for Scientific Research (ZONMW
918.10.615 and 91208004). Drs. Collins and Altman are
funded in part by the Medical Research Council (grant
G1100513). Dr. Altman is a member of the Medical Research
Council Prognosis Research Strategy (PROGRESS) Partnership
(G0902393/99558).

Table—Continued

Section/Topic Item Development
or Validation?

Checklist Item Page

Other information
Supplementary

information
21 D;V Provide information about the availability of supplementary resources, such as study

protocol, Web calculator, and datasets.
Funding 22 D;V Give the source of funding and the role of the funders for the present study.

* Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are
denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD checklist in conjunction with the TRIPOD explanation
and elaboration document.
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CORRECTION: TRANSPARENT REPORTING OF A MULTIVARIABLE

PREDICTION MODEL FOR INDIVIDUAL PROGNOSIS OR

DIAGNOSIS (TRIPOD): THE TRIPOD STATEMENT

A recent article (1) was erroneously published with the
American College of Physicians copyright symbol. The
ACP does not hold copyright on this manuscript.

This has been corrected in the online version.
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Development and Validation of a Protein-Based Risk Score
for Cardiovascular Outcomes Among Patients
With Stable Coronary Heart Disease
Peter Ganz, MD; Bettina Heidecker, MD; Kristian Hveem, MD, PhD; Christian Jonasson, PhD; Shintaro Kato, MS;
Mark R. Segal, PhD; David G. Sterling, PhD; Stephen A. Williams, MD, PhD

IMPORTANCE Precise stratification of cardiovascular risk in patients with coronary heart
disease (CHD) is needed to inform treatment decisions.

OBJECTIVE To derive and validate a score to predict risk of cardiovascular outcomes among
patients with CHD, using large-scale analysis of circulating proteins.

DESIGN, SETTING, AND PARTICIPANTS Prospective cohort study of participants with stable
CHD. For the derivation cohort (Heart and Soul study), outpatients from San Francisco were
enrolled from 2000 through 2002 and followed up through November 2011 (�11.1 years).
For the validation cohort (HUNT3, a Norwegian population-based study), participants were
enrolled from 2006 through 2008 and followed up through April 2012 (5.6 years).

EXPOSURES Using modified aptamers, 1130 proteins were measured in plasma samples.

MAIN OUTCOMES AND MEASURES A 9-protein risk score was derived and validated for 4-year
probability of myocardial infarction, stroke, heart failure, and all-cause death. Tests, including
the C statistic, were used to assess performance of the 9-protein risk score, which was
compared with the Framingham secondary event model, refit to the cohorts in this study.
Within-person change in the 9-protein risk score was evaluated in the Heart and Soul study
from paired samples collected 4.8 years apart.

RESULTS From the derivation cohort, 938 samples were analyzed, participants’ median age
at enrollment was 67.0 years, and 82% were men. From the validation cohort, 971 samples
were analyzed, participants’ median age at enrollment was 70.2 years, and 72% were men.
In the derivation cohort, C statistics were 0.66 for refit Framingham, 0.74 for 9-protein,
and 0.75 for refit Framingham plus 9-protein models. In the validation cohort, C statistics
were 0.64 for refit Framingham, 0.70 for 9-protein, and 0.71 for refit Framingham plus
9-protein models. Adding the 9-protein risk score to the refit Framingham model increased
the C statistic by 0.09 (95% CI, 0.06-0.12) in the derivation cohort, and in the validation
cohort, the C statistic was increased by 0.05 (95% CI, 0.02-0.09). Compared with the refit
Framingham model, the integrated discrimination index for the 9-protein model was 0.12
(95% CI, 0.08-0.16) in the derivation cohort and 0.08 (95% CI, 0.05-0.10) in the validation
cohort. In analysis of paired samples among 139 participants with cardiovascular events after
the second sample, absolute within-person annualized risk increased more for the 9-protein
model (median, 1.86% [95% CI, 1.15%-2.54%]) than for the refit Framingham model
(median, 1.00% [95% CI, 0.87%-1.19%]) (P = .002), while among 375 participants without
cardiovascular events, both scores changed less and similarly (P = .30).

CONCLUSIONS AND RELEVANCE Among patients with stable CHD, a risk score based on 9
proteins performed better than the refit Framingham secondary event risk score in predicting
cardiovascular events, but still provided only modest discriminative accuracy. Further
research is needed to assess whether the score is more accurate in a lower-risk population.
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C oronary heart disease (CHD) remains a leading cause of
mortality and morbidity.1 Despite the importance of risk
assessment,2 considerable room for improvement

remains.3 Genetic risk factors4,5 and candidate proteins, such
as C-reactive protein, have delivered only modest advances2 and
do not adequately enable precision medicine—management
based on accurately stratified personal phenotyping.

A recent scientific statement from the American Heart
Association predicted that proteomics will be transformative,6

but the proteomic characterization of cardiovascular risk
phenotypes in large populations requires a high-throughput
technology. In this study, such a technology was applied,
based on modified aptamers as binding reagents,7 to quan-
tify 1130 proteins in 2 prospective cohorts of participants
with stable CHD. The objectives of this study were the fol-
lowing: (1) to evaluate a broader range of prognostic plasma
protein biomarkers than previously possible; (2) to create a
multiprotein model of biomarkers for prognostic stratifica-
tion; (3) to validate the performance of the model in an
external cohort8; (4) to assess the robustness of this model
and key prognostic proteins within it to typical variations in
sample collection and processing9; (5) to determine whether
inclusion of this multiprotein panel in a risk score com-
posed of traditional risk factors improves risk prediction;
and (6) to determine from analysis of paired samples col-
lected nearly 5 years apart whether the interval change in
multiprotein panel risk score is greater among participants
who experience a cardiovascular event after the second
sample than among participants who do not. This study
focused on participants with stable CHD because they have
a broad range of risk that is not adequately identified by tra-
ditional risk factors.10,11

Methods
Study Populations
Studies in both cohorts were approved by the appropriate
institutional review boards, and all participants provided
written informed consent. The derivation cohort consisted of
938 baseline plasma samples from the Heart and Soul
study—a prospective cohort of patients with stable CHD from
12 clinics in the San Francisco Bay Area (enrollment, Septem-
ber 2000-December 2002; last follow-up, November 2011).
The Heart and Soul study included participants with history
of myocardial infarction (MI), angiographic evidence of at
least 50% stenosis in 1 or more coronary vessels, prior evi-
dence of inducible ischemia by stress testing, or history of
coronary revascularization. Participants were excluded if
they had an MI within the previous 6 months, were unable to
walk 1 block, or were planning to relocate from the local area
within 2 years. From this cohort, a prognostic 9-protein
model was constructed and then validated on 971 samples
from HUNT3, a prospective population-based cohort study
from Nord-Trøndelag County in Norway (enrollment, 2006-
2008; last follow-up, April 2012).12 HUNT3 participants were
included who met Heart and Soul study inclusion criteria and
had not had an MI within the previous 6 months. In the Heart

and Soul study, race was self-identified in a questionnaire
with categories of white, black, Asian, Latino, or other.13

HUNT3 was a racially homogeneous cohort (≥98% white).14

The information about race was used to discern whether the
racial composition of the subset of participants with paired
samples was similar to that of the overall Heart and Soul
population in this study.

In contrast to the more standardized sample collection in
the derivation cohort (fasted samples were collected at the
same time of day and centrifuged and frozen within 1 hour of
collection), sample collection in the validation cohort was more
representative of likely clinical practice conditions: partici-
pants did not fast, and samples were collected at random times
of day and processed (≤24 hours) after blood draw.

Changes in the 9-protein risk score were assessed by using
paired samples from 514 participants in the Heart and Soul
study in whom second plasma samples were taken a median
4.8 years after the first; participants had no cardiovascular
events between these 2 samples. The study evaluated whether
the second 9-protein risk score or the change from the base-
line risk score could help to differentiate those participants who
had a cardiovascular event after the second sample from those
who did not. A flowchart of the sample and statistical process
is shown in Figure 1 and explained further in section 1 of the
Supplement.

Quantification of Proteins in Human Plasma
by Modified Aptamers
The method of quantification of proteins by modified
aptamers has been previously described.7,15,16 In brief, each
of the 1130 individual proteins measured (eTable 1 in the
Supplement) has its own binding reagent made of chemically
modified DNA, referred to as modified aptamer.7 Each
sample of plasma was incubated with the mixture of modi-
fied aptamers to generate modified aptamer-protein com-
plexes. Unbound modified aptamers and unbound or non-
specifically bound proteins were eliminated by 2 bead-based
immobilization steps. After eluting the modified aptamers
from the target protein, the fluorescently labeled modified
aptamers were directly quantified on an Agilent hybridiza-
tion array (Agilent Technologies). Calibrators were included
so that the degree of fluorescence was a quantitative reflec-
tion of protein concentration. The 1054 proteins that passed
quality control (eTable 1 in the Supplement) had median
intraassay and interassay coefficient of variation of less than
5%. The key data processing steps, statistical modeling, and
specific assessments are summarized in Figure 1.

Statistical Methods
The primary outcome in this study was defined as the first
event among MI, stroke/transient ischemic attack (referred to
as stroke), heart failure hospitalization, or all-cause death. Cox
proportional hazards models were used to estimate the asso-
ciation between levels of individual proteins and risk of pri-
mary outcome. In single-variable analysis of an association of
individual proteins with the primary outcome, Bonferroni-
corrected significance levels were reported, adjusting for 1054
comparisons, resulting in a nominal significance level
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(P < 4.74 × 10−5). All other statistical tests were 2-sided using
a nominal 5% significance level (P < .05). To construct the mul-
tiprotein risk model for primary outcome, the least absolute
shrinkage and selection operator17 (LASSO) was used for vari-
able (protein) selection with the Cox model. This method pe-
nalized the sum of the absolute values of the regression coef-
ficients leading to some coefficients shrinking to zero and thus
simultaneously performed variable selection.17-19 LASSO regu-
larization level was chosen by cross-validation using the 1 stan-
dard error rule (section 3 in the Supplement). LASSO was used
for variable selection only, with the fully parametric (Weibull)
survival model as the final prognostic model. Stepwise back-
ward elimination, starting from the set of LASSO-selected pro-
teins, was used to remove proteins that were not significant
predictors in the absence of the constraint imposed by the
LASSO penalty using the Bayesian information criterion stop-
ping criteria.

As a comparative reference for the multiprotein risk model,
the variables from the Framingham secondary event risk
model20 were refit to the Heart and Soul derivation cohort
(referred to as refit Framingham). This model included age,
sex, total cholesterol, high-density lipoprotein cholesterol
(HDL-C), diabetes, systolic blood pressure, and current smok-
ing status.20 The 4-year time horizon was retained, for which
this risk score was originally validated.20

Model performance within each cohort was assessed by
discrimination and calibration. For discrimination, both the
C statistic21 and discrimination slope8 are reported. The
category-free net reclassification index (NRI>0)22 and inte-

grated discrimination index (IDI)8 were used to assess reclas-
sification performance and improvement in discrimination
over the refit Framingham model. Calibration performance
was assessed with a calibration plot and summarized across
the full range of risk scores using the Hosmer-Lemeshow sta-
tistic. Calibration-in-the-large is also reported—the difference
between the observed 4-year event frequency and the mean
predicted risk score. Both the refit Framingham and protein
models were recalibrated (Section 4, eTables 2 and 3; eFig-
ures 1 and 2 in the Supplement) for use in the validation
cohort to enable an equal comparison and reduce the effect
of miscalibration.23,24 Distribution-free (nonparametric) 95%
CIs were reported for median values and bootstrap intervals
for point estimates of performance metrics when asymptotic
intervals were not available.

Changes in risk score in paired samples were assessed using
the Wilcoxon rank sum test comparing the within-person
change for patients with and without events after their sec-
ond blood sample. Within-person risk score differences were
expressed, relative to the elapsed time between the 2 blood
collections, and annualized. A likelihood ratio test was used
to compare the fit of the augmented model and combining
within-person change with the baseline proteomic risk score.
All statistical computing was performed using the R Lan-
guage for Statistical Computing (version 3.2.1).25

Results
Population Characteristics
The characteristics of the derivation and external validation
cohorts are summarized in Table 1. There were fewer events
in the validation cohort, primarily because of shorter follow-
up.

Proteins Prognostic of Outcomes
At a Bonferroni significance level of 5%, corrected for 1054 com-
parisons, 200 proteins were associated with the primary out-
come (145 positively and 55 negatively). The hazard ratios (HRs)
and levels of statistical significance for these 200 prognostic
proteins are listed in eTable 4 in the Supplement. In the con-
struction of the risk model, the LASSO process selected 16 prog-
nostic proteins, for which biological functions are listed in sec-
tion 5.1 of the Supplement and HRs in the derivation and
validation cohorts are shown in eFigure 3 in the Supplement.
Stepwise backward elimination reduced these to the subset of
9 proteins used in the final prognostic model. The 9 proteins
and their HRs are angiopoietin-2 (ANGPT2) (HR, 1.67 [95%
CI,1.53-1.82]; P < 1.00 × 10−16), matrix metalloproteinase-12
(MMP12) (HR, 1.65 [95% CI, 1.50-1.80]; P < 1.00 × 10−16), chemo-
kine (C-C motif) ligand 18 (CCL18) (HR, 1.47 [95% CI, 1.34-
1.61]; P = 1.11 × 10−16), complement 7 (C7) (HR, 1.47 [95% CI,
1.36-1.59]; P < 1.00 × 10−16), α1-antichymotrypsin complex
(SERPINA3) (HR, 1.39 [95% CI, 1.28-1.51]; P = 1.97 × 10−14),
angiopoietin-related protein 4 (ANGPTL4) (HR, 1.27 [95% CI,
1.18-1.37]; P = 4.95 × 10−11), troponin I (TNNI3) (HR, 1.27 [95%
CI, 1.19-1.35]; P = 1.02 × 10−12), growth differentiation factor
11/8 (GDF8/11) (HR, 0.72 [95% CI, 0.57-0.69]; P = 8.79E × 10−9),

Figure 1. Sample and Statistical Process for Evaluation
of the 9-Protein Model

Protein quantification by modified aptamer assay
1130 Proteins measured in a total of 2496 samplesa

Validation cohort
971 Baseline samples from participants

in the HUNT3 (Helseundersøkelsen
i Nord-Trøndelag) study

Analysis of longitudinal changes
in proteins

514 Paired samples, 5 years apart,
from participants in the Heart
and Soul study derivation cohort

Derivation cohort
938 Baseline samples from participants in

the Heart and Soul study

1054 Proteins and 2423 samples passed quality controlb

16 Proteins selected by the least absolute
shrinkage and selection operator (LASSO)

9-Protein model constructed through stepwise
backward elimination

Evaluation of performance of
9-Protein model

Evaluation of longitudinal changes
in 9-Protein model

a Samples were sourced from the Heart and Soul study and the HUNT3 study.
b Proteins (n = 76) and samples (n = 73) that failed standard interrun and

intrarun assay quality control acceptance metrics (section 1 of the
Supplement) were deemed unfit for analysis.
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and α2-antiplasmin (SERPINF2) (HR, 0.64 [95% CI, 0.59-
0.71]; P < 1.00 × 10−16).

9-Protein Risk Score
The 9-protein risk score reflects the probability of a cardio-
vascular event occurring within 4-years and is given by risk
score (Supplement, section 5.2):

risk score = 1 – e-e 
Log (4)–PI( )0.85 ,

where the prognostic index (PI) combines the measurements
of the 9 proteins as follows:

prognostic index = 16.61 − 1.55 × ANGPT2 + 1.22 × GDF8/11
− 2.12 × C7 + 2.64 × SERPINF2 − 0.57 × CCL18 −1.02 ×
ANGPTL4 − 1.43 × SERPINA3 − 0.72 × MMP12 − 0.59 ×

TNN13.

Table 2 provides the estimated HRs and associated model
coefficients for a Cox proportional hazards model based on

the refit Framingham variables for the full duration of
follow-up, with and without the addition of prognostic
index from the 9-protein model. In the presence of the
information from 9 proteins, most clinical variables
remained as significant risk predictors except for HDL-C.
Systolic blood pressure was not a significant risk predictor
either in the refit Framingham model or with the addition of
the 9 proteins. Adjusting the 9-protein prognostic index for
the Framingham variables reduced its HR only modestly
(eFigure 4 in the Supplement), suggesting that the 9 pro-
teins contained prognostic information that was at least
partly independent of traditional risk factors.

Proteomic Model Performance
Risk stratified survival curves of the 2 study populations are
shown in Figure 2, illustrating that in both the derivation
and validation cohorts, the participants had 4-year cumula-
tive event rates of 60% to 80% in the 10th deciles and less
than 10% in the first deciles. Discrimination performance

Table 1. Baseline Characteristics of the Study Cohorts

Median (Interquartile Range)

Derivation Cohort (Heart and Soul) Validation Cohort (HUNT3)

All Participants
(N = 938)

Subset With Follow-up
Samples
(n = 514)

Annualized Within-Person
Change for Subset With
Follow-up Samplesa

All Participants
(N = 971)

Follow-up, y 7.9 (3.5 to 9.0) 9.0 (8.4 to 9.9) 4.3 (3.9 to 4.9)

Age, y 67.0 (59.3 to 75.0) 66.0 (59.0 to 73.0) 1.0 (0.87 to 1.06) 70.2 (61.8 to 77.5)

Men, No. (%) 773 (82.4) 418 (81.3) 700 (72.1)

White, No. (%) 565 (60.2) 312 (60.7) ≥952 (≥98)

Black, No. (%) 151(16.1) 81(15.8)

Asian, No. (%) 108(11.5) 64(12.5)

Latino, No. (%) 82(8.7) 43(8.4)

Diabetes, No. (%) 247 (26.4) 114 (22.2) 133 (13.7)

Current smoker, No. (%) 184 (19.7) 85 (16.6) 198 (21.4)

Events during follow-up period, No. 465 139 272

Time to event, yb 3.8 (1.7 to 6.8) 7.7 (6.5 to 8.9)c;
2.9 (1.7 to 4.1)c

2.1 (1.0 to 3.2)

BMId 27.7 (24.8 to 31.2) 27.9 (25.23 to 30.9) 0.06 (−0.22 to 0.32) 28.0 (25.7 to 30.8)

HDL-C, mg/dL 43.0 (36.0 to 53.0) 44.0 (36.0 to 54.0) 0 (−1.05 to 1.28) 42.5 (38.7 to 54.1)e

LDL-C, mg/dL 99.0 (82.0 to 122.0) 99.0 (83.0 to 121.0) −1.91 (−6.25 to 1.95) f

Total cholesterol, mg/dL 171.0 (150.0 to 197.0) 173.0 (150.0 to 195.0) −2.12 (−7.21 to 2.39) 174.0 (150.8 to 201.1)

Creatinine, mg/dL 1.0 (0.9 to 1.2) 1.0 (0.9 to 1.2) 0.02 (0 to 0.05) 1.0 (0.9 to 1.2)

CRP, mg/L 2.3 (1.0 to 4.9) 1.9 (0.8 to 4.0) −0.07 (−0.36 to 0.10) 1.5 (0.7 to 3.3)

eGFR, mL/ming 73.9 (58.5 to 88.0) 76.4 (61.8 to 90.2) −2.05 (−3.77 to −0.56) 68.4 (55.9 to 80.5)

Triglycerides, mg/dL 110.0 (74.0 to 167.0) 107.0 (71.0 to 161.0) −2.04 (−9.13 to 3.44) 141.6 (106.2 to 194.7)

Systolic blood pressure, mm Hg 130 (120 to 144) 130.0 (120.0 to 140.5) 1.21 (−1.87 to 4.38) 133 (120 to 146)

Diastolic blood pressure, mm Hg 74 (68 to 80) 75 (68 to 80) 0.22 (−1.53 to 1.87) 73 (65 to 80)

Abbreviations: BMI, body mass index; CRP, C-reactive protein; eGFR, estimated
glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol.

SI conversion factors: To convert HDL-C, LDL-C, and total cholesterol from
mg/dL to mmol/L, multiply by 0.0259; creatinine from mg/dL to μmol/L,
multiply by 88.4; CRP from mg/L to nmol/L, multiply by 9.524; triglycerides
from mg/dL to mmol/L, multiply by 0.0113.
a Annualized within-person change was calculated as the difference between

values at baseline and paired second sample then divided by the elapsed time
between the 2 clinical visits. Median collection time between baseline and
paired second sample was 4.8 years.

b Calculation included only participants with events.
c First value is from the baseline sample and the second value is from

the follow-up sample.
d BMI was calculated as weight in kilograms divided by height

in meters squared.
e HDL-C was nonfasted.
f LDL-C was not available.
g eGFR was calculated using CKD-EPI 2009.
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was assessed using the 4-year time horizon, the same as the
original Framingham secondary event model.20 Table 3 lists
the performance metrics for the refit Framingham model,
the 9-protein model, and for the combination of both mod-
els. In the derivation cohort, the C statistic increased from
0.66 for the refit Framingham model to 0.74 (Δ C statistic,
0.09 [95% CI, 0.06-0.12]) for the 9-protein model alone and
to 0.75 (Δ C statistic, 0.10 [95% CI, 0.08-0.12]) for the
9-protein model combined with the refit Framingham
model. The discrimination slope was 0.09 (95% CI, 0.07-
0.11) for the refit Framingham model, 0.21 (95% CI, 0.17-

0.24) for the 9-protein model, and 0.23 (95% CI, 0.19-0.26)
for the refit Framingham combined with the 9-protein
model. When compared with refit Framingham, the
9-protein model had an IDI of 0.12 (95% CI, 0.08-0.16),
which indicates an absolute increase of 12% in mean risk for
participants with events compared with participants with-
out events over the clinical variable model. The 9-protein
model had an NRI(>0) of 0.52 (95% CI, 0.40-0.65), with
event-specific components of 0.22 (95% CI, 0.11-0.36) and
no event-specific components of 0.30 (95% CI, 0.22-0.36).
In the validation cohort, inclusion of the 9-protein score

Figure 2. Event-Free Survival for End Points of Myocardial Infarction, Stroke, Heart Failure, and Death, Stratified by Deciles
of the 9-Protein 4-Year Risk Score
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The shading in the survival plots indicates 95% CI for the first and 10th deciles. Decile 1 indicates the lowest score; decile 10 indicates the highest score.
Data defining the deciles of risk score are presented in Figure 3.

Table 2. Risk Prediction Models for Primary End Point of Myocardial Infarction, Stroke, Heart Failure, and Deatha

Framingham Variables Aloneb
Framingham Variablesb

Plus 9-Protein Prognostic Index

HR (95% CI) β P Value HR (95% CI) β P Value
Men 1.71 (1.26 to 2.32) 0.535 <.001 1.63 (1.20 to 2.20) 0.487 .002

Age, y 1.77 (1.58 to 1.99) 0.573 <.001 1.28 (1.13 to 1.44) 0.247 <.001

Total cholesterol, mg/dL 1.14 (1.03 to 1.26) 0.129 .01 1.20 (1.09 to 1.32) 0.178 <.001

HDL-C, mg/dL 0.88 (0.79 to 0.99) −0.122 .03 0.95 (0.85 to 1.05) −0.056 .28

Diabetes 1.84 (1.50 to 2.26) 0.611 <.001 1.44 (1.17 to 1.77) 0.363 <.001

Systolic blood pressure, mm Hg 1.03 (0.94 to 1.13) 0.029 .55 0.99 (0.90 to 1.08) −0.014 .77

Current smoker 2.02 (1.58 to 2.58) 0.704 <.001 1.50 (1.16 to 1.94) 0.405 .002

9-Protein prognostic index − − − 2.32 (2.08 to 2.58) 0.840 <.001

Abbreviation: HDL-C, high density lipoprotein cholesterol.

SI conversion factor: To convert HDL-C and total cholesterol from mg/dL to
mmol/L, multiply by 0.0259.

a Continuous variables were standardized so hazard ratios reflect incremental
change in hazard per 1 standard deviation change in predictor.

b Framingham variables were refit in the derivation cohort using a Cox
proportional hazard model with and without the 9-protein prognostic index.
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with the refit Framingham model generated an NRI(>0) of
0.48 (95% CI, 0.33-0.62) (Table 3). The mean 4-year risk
proteomic risk was within 2 percentage points of the
observed event rate in the external validation cohort
(calibration-in-the-large). Calibration performance across
the full range of the 9-protein risk scores is shown in
Figure 3 (eFigure 2 [for refit Framingham model] in the
Supplement); for the 9-protein model, the observed risk in
each decile of the validation cohort was within 5 percentage
points of the mean protein risk score. The 9-protein model
was developed for the composite end points of MI, heart
failure, stroke, and death. For individual end points, median
9-protein risk score in derivation for MI was 33% (95% CI,
25.6%-38.6%); for heart failure, 37% (95% CI, 31.5%-43.7%);
for stroke, 24% (95% CI, 19.6%-29.7%); and for death, 30%
(95% CI, 27.0%-34.0%). In the absence of any event, the
median 4-year 9-protein risk score was 14.2% (95% CI,
13.5%-15.2%). Similar risk score distributions across these
event types were observed in the validation cohort (eFigure
5 in the Supplement).

Analysis of Paired Samples
Changes in the 9-protein risk score were evaluated from paired
samples from 514 participants (Heart and Soul study) in whom
second plasma samples were taken a median of 4.8 years after
the first, and participants were event-free between these 2
samples. The baseline characteristics of this subset of partici-
pants were similar to all Heart and Soul participants in this study
(Table 1) except the time to the first event was longer because
of the requisite absence of events prior to the second sample.

Among the participants with paired samples, 139 had an
event (MI, heart failure, stroke, or death) after the second
sample; the paired samples were taken a median of 2.8 years
and 7.7 years prior to that event. The remaining 375 partici-
pants had paired samples a median of 4.3 and 9.0 years prior
to completing their event-free follow-up. This analysis as-
sessed whether the 9-protein risk score changed to a greater
extent for participants approaching an event compared with
participants who remained event free.

As Figure 4 shows, 139 participants who experienced an
event after the second sample had a median 9-protein risk of

Table 3. Comparative Performance Metrics in Derivation and Validation Cohorts for Refit Framingham Model, 9-Protein Model,
and Their Combination When Predicting Primary End Points of Myocardial Infarction, Stroke, Heart Failure, and Death

Cohort Refit Framingham Model 9-Protein Model
Refit Framingham Model
Plus the 9-Protein Model

C statistic Derivation 0.66 (0.63 to 0.68) 0.74 (0.72 to 0.77) 0.75 (0.73 to 0.78)

Validation 0.64 (0.61 to 0.67) 0.70 (0.67 to 0.72) 0.71 (0.69 to 0.74)

Δ C statistic
(derivation and validation)a

Both 0.01 (−0.01 to 0.04) 0.05 (0.03 to 0.07) 0.04 (0.02 to 0.07)

Discrimination slope Derivation 0.09 (0.07 to 0.11) 0.21 (0.17 to 0.24) 0.23 (0.19 to 0.26)

Validation 0.07 (0.05 to 0.08) 0.14 (0.12 to 0.17) 0.17 (0.14 to 0.20)

Δ Discrimination slope
(derivation and validation)a

Both 0.02 (0 to 0.05) 0.07 (0.01 to 0.11) 0.06 (0.01 to 0.11)

Hazard Ratio (95% CI)

Quintileb Derivation 5.0 (3.60 to 6.94) 11.7 (8.08 to 16.86) 16.3 (10.69 to 24.93)

Validation 6.6 (3.74 to 11.54) 7.6 (4.53 to 12.85) 9.8 (4.53 to 20.99)

Per standard deviation Derivation 1.9 (1.72 to 2.15) 2.5 (2.27 to 2.73) 2.8 (2.49 to 3.05)

Validation 1.7 (1.53 to 1.97) 2.1 (1.86 to 2.33) 2.2 (1.97 to 2.52)

Hosmer-Lemeshowc Derivation 6.8 (5.57 × 10−1) 5.3 (7.25 × 10−1) 3.5 (9.02 × 10−1)

Validation 23.5 (2.81 × 10−3) 6.8 (5.62 × 10−1) 9.7 (2.89 × 10−1)

Δ C statistic
(refit Framingham model)

Derivation
1 [Reference]

0.09 (0.06 to 0.12) 0.10 (0.08 to 0.12)

Validation 0.05 (0.02 to 0.09) 0.07 (0.04 to 0.09)

Integrated discrimination indexd Derivation
1 [Reference]

0.12 (0.08 to 0.16) 0.14 (0.10 to 0.17)

Validation 0.08 (0.05 to 0.10) 0.10 (0.08 to 0.13)

NRI(>0)d Derivation
1 [Reference]

0.52 (0.40 to 0.65) 0.72 (0.60 to 0.84)

Validation 0.43 (0.26 to 0.57) 0.48 (0.33 to 0.62)

Event NRId Derivation
1 [Reference]

0.22 (0.11 to 0.36) 0.29 (0.19 to 0.42)

Validation 0.08 (−0.06 to 0.22) 0.30 (0.16 to 0.44)

No-event NRId Derivation
1 [Reference]

0.30 (0.22 to 0.36) 0.43 (0.36 to 0.48)

Validation 0.35 (0.28 to 0.41) 0.18 (0.11 to 0.24)

Abbreviation: NRI, net reclassification index.
a Δ C statistic and Δ discrimination slope indicate the difference in C statistic and

discrimination slope either between derivation and validation or between
9-protein model and refit Framingham model.

b Quintile hazard ratio is the ratio of hazard for patients in the 5th (highest)
quintile risk category compared with those in the first (lowest) quintile
risk category.

c Point estimates and 95% CIs are shown for all values except

Hosmer-Lemeshow calibration statistic, for which the point estimate
(mean square difference between predicted and observed risk across the
deciles) and associated P value are shown.

d The integrated discrimination index and category-free NRI(>0)
were calculated using the refit Framingham model as the reference
model with event NRI and no-event NRI indicating the fraction of
participants correctly reclassified by the 9-protein model within the event
and no-event groups.
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24.6% (95% CI, 22.6%-27.7%) at baseline and 34.0% (95% CI,
29.2%-38.4%) at 4.8 years while median refit Framingham
risk was 28.7% (95% CI, 26.6%-30.3%) at baseline and 33.8%
(95% CI, 32.5%-36.2%) at 4.8 years. The 375 participants
who were event free during the entire study had a median
9-protein risk of 14.4% (95% CI, 13.5%-16.5%) at baseline and
17.4% (95% CI, 16.0%-19.0%) at 4.8 years while median refit
Framingham risk was 20.3% (95% CI, 19.0%-21.5%) at base-
line and 23.8% (95% CI, 22.2%-25.8%) at 4.8 years. The
absolute within-person change in the 9-protein risk was
greater than for the refit Framingham model for participants
with events (P = .002); median annualized within-person
change was 1.86% (95% CI, 1.15%-2.54%) for the 9-protein
model compared with 1.00% (95% CI, 0.87%-1.19%) for refit
Framingham. Over 5 years, these annualized values repre-
sent an absolute change in risk of 9.3% for the 9-protein

score and 5.0% for refit Framingham. For both risk models,
these within-person changes were greater than for the
event-free group (P < .001), in which the median annualized
within-person change in the 9-protein risk group was 0.65%
(95% CI, 0.45%-0.86%) compared with 0.72% (95% CI,
0.64%-0.80%) for refit Framingham (P = .3). The IDI for the
9-protein risk predictions at baseline, compared with 4.8
years, was 0.07 (95% CI, 0.04-0.10)—an absolute increase in
mean risk of 7% for participants with events after the second
sample over their baseline risk. Combining the 9-protein
prognostic index at 4.8 years with the within-person change
from baseline yielded an augmented model that fit slightly
better (P = .03) than the 9-protein prognostic index at 4.8
years alone, although the discriminatory power was not
meaningfully improved (IDI, 0.009; NRI(>0), 0.26; Δ C sta-
tistic, 0.006).

Figure 3. Agreement Between Observed vs Predicted 4-Year Incidence of Myocardial Infarction, Stroke,
Heart Failure, and Death With the 9-Protein Model
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Discussion

Individualized risk assessment in patients diagnosed with
apparently stable CHD is necessary because stable CHD
appears to be a heterogeneous entity with a broad range of
outcomes.10,11 For stratification of cardiovascular risk using
the “omics” technologies, genomics has been investigated
most extensively, but genomic risk scores do not substan-
tively improve risk discrimination over traditional risk
factors.4,5,26 Even if genomic approaches are ultimately suc-
cessful, they will succeed primarily in predicting risk related
to lifelong exposure and will not discern any changes in risk
over time.4,5,11,26 Compared with genomics, proteomics
offers several advantages: proteins integrate both environ-
mental and genetic influences; proteins are responsive to
lifestyle and therapeutic interventions, informing of changes
in risk27,28; and proteins are effectors of biological process
and thus potential targets of therapies.29 However, limita-
tions in proteomic techniques have to this point hindered the
implementation of these advantages.

In this study, levels of 1130 plasma proteins were mea-
sured using modified aptamers7,15,30,31 to identify prognostic
proteins that improve cardiovascular risk prediction. A pre-
diction time horizon of 4 years was chosen—sufficiently long
to implement therapeutic changes11—and yet not so distant that
risk becomes deniable, losing its motivation. In the discovery
cohort, 200 proteins were prognostic of cardiovascular events
(eTable 4 in the Supplement), many of which are newly dis-
covered biomarkers of cardiovascular risk.

An unbiased statistical approach was used to arrive at a
9-protein risk prediction model which, by itself, performed
better than traditional risk factors represented by a refit
Framingham secondary event model20 and offered fair dis-
crimination based on the C statistic (Table 3). The discrimina-
tion slope represents the separation in mean risk between par-
ticipants with and without events.8,18 The addition of the
9-protein risk score to refit Framingham offered a substantial
improvement in this separation (Table 3). Admittedly, the large
magnitude of the improvement in discrimination (in C statis-
tic, discrimination slope separation, and IDI) and net reclas-
sification by the 9-protein model (Table 3) was partly reflec-
tive of the weak performance of traditional risk factors in
predicting the risk of secondary events,32 also observed in the
present study.

By including an independent external cohort in this study,
best practices for validation were followed,8 reducing the risk
of translation to clinical use by verifying the predictive capac-
ity of the key prognostic proteins and their combination in the
proteomic model to less-stringent sample collection and pro-
cessing that are more typical of clinical practice.6,9,12 In apply-
ing protein-based risk assessment to patients with stable CHD,
this diagnosis was found to be associated with a broad range
of cardiovascular and mortality risks (Figure 2, Figure 3), sug-
gesting that stable CHD may not represent a single homoge-
neous entity.

Paired samples were used to evaluate whether the pro-
teomic risk changed over time as participants approached a car-
diovascular event. The 9-protein risk score changed more than
the refit Framingham model among participants approach-

Figure 4. Changes in Risk Scores of Myocardial Infarction, Stroke, Heart Failure, and Death in Paired Samples
4.8 Years Apart
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4-Year risk prediction at baseline and follow-upA

Annualized within-person change in 9 protein risk scoreB

A, Predicted cardiovascular risk in
paired samples among 139
participants who experienced an
event after the second sample (left),
and 375 participants who were event
free during the entire study (right).
Both panels show 4-year risk
predictions at baseline and follow-up
for the 9-protein and refit
Framingham models.

B, Annualized within-person change
in 9-protein risk was greater than for
refit Framingham for participants
who experienced events (P = .002)
and similar to change in refit
Framingham for participants who
were event free (P = .30). Median
absolute annualized within-person
change in the 9-protein risk score
was 1.86% compared with 1.00% for
refit Framingham.

Key to symbols: horizontal line
indicates the median, top and bottom
ends of the boxes indicate the
interquartile range (IQR), upper and
lower error bars extend to 1.5 × the
IQR, and the circles indicate data
points beyond 1.5 × the IQR.
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ing new events. In addition, the 9-protein risk score gener-
ated at the follow-up sample was a stronger predictor of sub-
sequent outcomes than the preceding baseline risk score. The
mutability of the proteomic risk score, in relation to future
events, offers a potential advantage over genetic risk predic-
tion, which remains unchanged during lifetime. It remains
unclear, however, whether the magnitude of changes in the
proteomic risk score among participants with future events
might lead to a change in management.

Other cardiovascular risk algorithms for stable CHD are avail-
able, including a model from the REACH (Reduction of Athero-
thrombosis for Continued Health) registry, which combines tra-
ditional risk factors with information about the extent of
diseased vascular beds, heart failure, atrial fibrillation, medi-
cal treatments, and geographic location.33 The REACH registry
algorithm reported a C statistic for the prediction of a next car-
diovascular event of 0.67 (95% CI, 0.66-0.68) and lacked ex-
ternal validation. The present study results could not be di-
rectly compared with the REACH model because some of the
REACH variables were unavailable in its 2 cohorts.

Another cardiovascular risk prediction model used the best
available candidate biomarkers for cardiovascular outcomes
in the Heart and Soul cohort,10 including high-sensitivity tro-
ponin, NT-proBNP, C-reactive protein, and urine albumin:
creatinine ratio. This risk prediction model did not replicate
well in external validation.10 Genetic variants have also been
associated with the risk of CHD. A recent study tested how well
a genetic risk score based on 27 variants could predict recur-
rent CHD events in the CARE (Cholesterol and Recurrent
Events) and PROVE IT-TIMI 22 (Pravastatin or Atorvastatin
Evaluation and Infection Therapy-Thrombolysis in Myocar-
dial Infarction 22) trial populations.4 The adjusted quintile HR
was 1.81 (95% CI, 1.22-2.67), a risk prediction that is apprecia-
bly smaller than proteomics yielded in the present study, with
an adjusted quintile HR of 7.63 (95% CI, 4.53- 12.85) in the vali-
dation set (Table 3).

Study Strengths
This study conducted a large-scale proteomic analysis of car-
diovascular risk, using a high-throughput proteomic
platform.7,16,30,31 The study was conducted in 2 large well-
characterized cohorts with standardized adjudication of out-
come events12,34 across 2 continents and included cross-
sectional and longitudinal assessments. Specimen quality has
been noted as an important reason why omics findings re-
ported from one laboratory may not replicate in others.9

Accordingly, the analyses in the present study were con-
ducted across a range of specimen qualities, representative of
standardized (derivation) and clinical practice conditions
(validation). The findings were consistent across this range of
specimen quality.

Limitations
This initial analysis of circulating proteins focused on a
population of relatively high-risk individuals with estab-
lished CHD. There is additional need for accurate cardiovas-
cular risk prediction in the lower-risk general population or
in even higher-risk individuals with CHD. Another limita-
tion is that this study investigated only the sensitivity to
increasing risk as represented by an approaching event; it
will be important to evaluate individual medical interven-
tions that alter risk to learn how well proteins can discern
changes in risk in specific settings.

Conclusions
Among patients with stable CHD, a risk score based on 9 pro-
teins performed better than the refit Framingham secondary
event risk score in predicting cardiovascular events but still only
provided modest discriminative accuracy. Further research is
needed to assess whether the score is more accurate in a lower-
risk population.
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Using Aptamer-Based Technology to Probe the Plasma
Proteome for Cardiovascular Disease Prediction
Marc S. Sabatine, MD, MPH

Circulating biomarkers play a major role in risk stratification
of patients with cardiovascular disease. The 3 most widely used
cardiovascular biomarkers—troponin, C-reactive protein, and

B-type natriuretic peptide—
have each been shown to pre-
dict risk of major adverse car-
diovascular outcomes beyond

traditional clinical factors, and for that reason, use of these
biomarkers is recommended in various practice guidelines.

How then should additional biomarkers be added to the
clinical armamentarium? The traditional approach has been
for candidate biomarkers to emerge from preclinical or pilot
clinical data and then be tested individually in progressively
larger cohorts that typically involve thousands of patients.
This serial approach is slow and requires the development of
dedicated assays, typically immunoassays, to detect each
biomarker of interest. Multiplexed immunoassays have been
developed but typically are constrained by interference
between antibodies, proteins, and assay diluents, leading to
degradations in accuracy that limit the number of simultane-
ous assays.1

In contrast, proteomics entails the large-scale systemic
analysis of proteins. Indeed, proteomics holds substantial
promise because proteins more directly shape an individu-
al’s phenotype than do genotypes. Akin to genome-wide as-
sociation studies, investigators can use a nontargeted pro-
teomic experimental strategy, in which information is acquired
on every analyte in a sample.2 With only approximately 19 000
genes that encode proteins and only a subset of these pro-
teins appearing in the circulation, assaying the human plasma
proteome might seem more tractable than genomics, in which
there are more than 3 billion base pairs.

The reality, however, is far more complicated. Proteins
can undergo many different sorts of posttranslational modifi-
cation that may generate species with different functions.
Moreover, the dynamic range of plasma protein concentra-
tions is vast3 with differences in abundance of more than
1010. Although improvements in technology have allowed
discovery work to be done,4 the requisite upstream sample
processing to reduce sample complexity prior to analysis has
effectively precluded the high throughput that is necessary
to analyze the large numbers of samples required to detect
realistic risk ratios.

In this issue of JAMA, Ganz and colleagues5 use an ap-
proach that lands somewhere in between the 2 extremes.1,3

Specifically, the investigators relied on aptamer-based
technology to assay 1130 proteins in plasma samples from

2 cohorts of patients with stable coronary heart disease,
including 938 samples from patients in the derivation cohort
and 971 samples from patients in the validation cohort.
Aptamers are small nucleic acids (either RNA or single-
stranded DNA) that can form secondary and tertiary struc-
tures capable of specifically binding proteins or other cellular
targets and thus can be considered the chemical equivalent
of antibodies.6 In brief, for each of the proteins of interest,
a modified aptamer was created that also contains biotin, a
photocleavable linker, and a fluorophore.7 Each sample of
plasma was incubated with the aptamers and then 2 immobi-
lization steps utilizing strepavidin-coated beads were per-
formed to eliminate unbound aptamers and unbound or non-
cognately bound proteins. The aptamers were eluted from
the target proteins, hybridized to a microarray containing
complementary single-stranded DNA probes, and then quan-
tified using the fluorescent tags.

Using this technology, Ganz et al5 found 9 proteins asso-
ciated with adverse cardiovascular outcomes that passed the
various statistical hurdles they rightly used when engaged in
multiple hypothesis testing to this degree (Bonferroni correc-
tion to the α threshold, LASSO [least absolute shrinkage and
selection operator], and then backward stepwise selection). The
authors constructed a multiprotein risk score using levels of
the 9 proteins and found a gradient of risk for adverse cardio-
vascular outcomes, not only in their derivation set, as to be ex-
pected, but also in a separate validation set.

How should these findings be interpreted? The authors
conclude that their 9-protein risk score performed better
than a refit Framingham secondary event risk score but still
only provided modest discriminatory accuracy, with a C sta-
tistic of 0.70 (vs 0.64 for the clinical score). However, this
modest accuracy should not necessarily dampen enthusiasm
for their results. In fact, the focus on discriminatory accuracy
is misplaced in studies of biomarkers for long-term progno-
sis. Discriminatory accuracy is critically important when
assessing a test, typically dichotomized, for diagnosis. For
instance, is a patient presenting with chest pain having a
myocardial infarction, a pulmonary embolism, or an aortic
dissection? There is a truth to be known that is immediately
knowable, and ideally for clinical application, all patients
with the disease would have a positive test result and all
those without disease would have a negative test result.

The situation is very different when dealing with progno-
sis and trying to predict the risk of an adverse cardiovascular
outcome many years down the road. In this case, there is usu-
ally a gradient of risk in approximate but imperfect proportion
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to the level of the biomarker, and hence, the C statistic will be
modest. But clinicians are typically less interested in dis-
criminating risk between 2 patients and more interested in
being able to better calibrate a particular patient’s risk of
adverse events.8 Ganz et al5 showed the ability of their
9-protein model to do this, with patients having scores in the
bottom third of the distribution having an approximate
observed cardiovascular event rate over 4 years of 10%, those
in the middle third 20%, and those in the upper third greater
than 30%. These data would be important to physicians and
patients alike.

As is the case for any study, there are limitations to be
considered and further questions to be answered. Analytic
validation of the specificity of the aptamer-based findings
would be reassuring. The outcome was a composite of myo-
cardial infarction, stroke, hospitalization for heart failure,
and all-cause mortality. Such a broad composite was likely
necessary to ensure a sufficient number of events given the
relatively small size of the cohorts. However, the pathobiol-
ogy underlying an acute myocardial infarction, hospitaliza-
tion for heart failure, and a noncardiovascular death are
likely quite different. If anything, such an admixture would
make it more difficult to predict the composite outcome
accurately. Nonetheless, analyses with a more homogeneous

set of outcomes might yield more interesting biological asso-
ciations. How would the 9 proteins fare when compared with
a better clinical risk score plus commonly available and vali-
dated biomarkers such as a high-sensitivity troponin assay, a
natriuretic peptide, and a measure of renal function? Such
analyses will be important to truly gauge the clinically rel-
evant prognostic value of this multiprotein approach.

Although more accurate risk prediction is always wel-
come, clinicians more readily embrace measuring a prog-
nostic biomarker or calculating a risk score if the results
could alter therapeutic decision making.9,10 To that end, it
would be interesting to apply these arrays to samples from
patients in randomized clinical trials of therapies. If a gradi-
ent of treatment benefit existed, such data would make
measurement of the relevant proteins in clinical practice
more compelling (which, for the current list, is impractical).
Furthermore, part of the long-term value of this sort of pro-
teomics work may come from exploring the basic pathways
that underline some of the novel associations described. If
some of these proteins are true risk factors, rather than sim-
ply risk markers, then they could serve as targets for future
therapies. The quest for personalized or precision medicine
is an important one,11 and the work by Ganz et al5 is a wel-
come step in that direction.
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